209 research outputs found

    Frequency-dependent and correlational selection pressures have conflicting consequences for assortative mating in a color-polymorphic lizard, Uta stansburiana

    Get PDF
    Acknowledgments We would like to thank the numerous undergraduate researchers involved with this project for their invaluable assistance in lizard rearing and data collection. We also thank D. Haisten, A. Runemark, Y. Takahashi, and M. Verzijden for insightful comments on the manuscript. This project was funded by National Science Foundation DEBOS-15973 to A.G.M. and B.R.S.Peer reviewedPublisher PD

    Territory acquisition mediates the influence of predators and climate on juvenile red squirrel survival

    Full text link
    Juvenile survival to first breeding is a key life‐history stage for all taxa. Survival through this period can be particularly challenging when it coincides with harsh environmental conditions such as a winter climate or food scarcity, leading to highly variable cohort survival. However, the small size and dispersive nature of juveniles generally make studying their survival more difficult.In territorial species, a key life‐history event is the acquisition of a territory. A territory is expected to enhance survival, but how it does so is not often identified. We tested how the timing of territory acquisition influenced the winter survival of juvenile North American red squirrels Tamiasciurus hudsonicus, hereafter red squirrels, and how the timing of this event mediated the sources of mortality. We hypothesized that securing a territory prior to when food resources become available would reduce juvenile susceptibility to predation and climatic factors overwinter.Using 27 years of data on the survival of individually marked juvenile red squirrels, we tested how the timing of territory acquisition influenced survival, whether the population density of red squirrel predators and mean temperature overwinter were related to individual survival probability, and if territory ownership mediated these effects.Juvenile red squirrel survival was lower in the years of high predator abundance and in colder winters. Autumn territory owners were less susceptible to lynx Lynx canadensis and possibly mustelid Mustela and Martes spp., predation. Autumn territory owners had lower survival in colder winters, but surprisingly non‐owners had higher survival in cold winters.Our results show how the timing of a life‐history event like territory acquisition can directly affect survival and also mediate the effects of biotic and abiotic factors later in life. This engenders a better understanding of the fitness consequences of the timing of key life‐history events.The authors examine how territories, predators and climate influenced the winter survival of juvenile North American red squirrels over three decades. Territory owners survived better and were less affected by lynx abundance, but territories did not improve survival over colder winters. They provide insights into the understudied life stage of first independence.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155889/1/jane13209_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155889/2/jane13209.pd

    Indirect effects on fitness between individuals that have never met via an extended phenotype

    Full text link
    Interactions between organisms are ubiquitous and have important consequences for phenotypes and fitness. Individuals can even influence those they never meet, if they have extended phenotypes that alter the environments others experience. North American red squirrels (Tamiasciurus hudsonicus) guard food hoards, an extended phenotype that typically outlives the individual and is usually subsequently acquired by non‐relatives. Hoarding by previous owners can, therefore, influence subsequent owners. We found that red squirrels breed earlier and had higher lifetime fitness if the previous hoard owner was a male. This was driven by hoarding behaviour, as males and mid‐aged squirrels had the largest hoards, and these effects persisted across owners, such that if the previous owner was male or died in mid‐age, subsequent occupants had larger hoards. Individuals can, therefore, influence each other’s resource‐dependent traits and fitness without ever meeting, such that the past can influence contemporary population dynamics through extended phenotypes.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148423/1/ele13230.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148423/2/ele13230_am.pd

    Social effects of territorial neighbours on the timing of spring breeding in North American red squirrels

    Full text link
    Organisms can affect one another’s phenotypes when they socially interact. Indirect genetic effects occur when an individual’s phenotype is affected by genes expressed in another individual. These heritable effects can enhance or reduce adaptive potential, thereby accelerating or reversing evolutionary change. Quantifying these social effects is therefore crucial for our understanding of evolution, yet estimates of indirect genetic effects in wild animals are limited to dyadic interactions. We estimated indirect phenotypic and genetic effects, and their covariance with direct effects, for the date of spring breeding in North American red squirrels (Tamiasciurus hudsonicus) living in an array of territories of varying spatial proximity. Additionally, we estimated indirect effects and the strength of selection at low and high population densities. Social effects of neighbours on the date of spring breeding were different from zero at high population densities but not at low population densities. Indirect phenotypic effects accounted for a larger amount of variation in the date of breeding than differences attributable to the among‐individual variance, suggesting social interactions are important for determining breeding dates. The genetic component to these indirect effects was however not statistically significant. We therefore showcase a powerful and flexible method that will allow researchers working in organisms with a range of social systems to estimate indirect phenotypic and genetic effects, and demonstrate the degree to which social interactions can influence phenotypes, even in a solitary species.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149549/1/jeb13437_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149549/2/jeb13437.pd

    Anticipatory Reproduction and Population Growth in Seed Predators

    Full text link

    Using playback of territorial calls to investigate mechanisms of kin discrimination in red squirrels

    Get PDF
    Kin recognition can facilitate kin selection and may have played a role in the evolution of sociality. Red squirrels (Tamiasciurus hudsonicus) defend territories using vocalizations known as rattles. They use rattles to discriminate kin, though the mechanism underlying this ability is unknown. Our objective was to distinguish between the mechanisms of prior association, where animals learn the phenotypes of kin they associate with early in life, and phenotype matching/recognition alleles, where animals use a template to match phenotypes, thereby allowing them to recognize kin without an association early in life. We used audio playbacks to measure the responses of squirrels to rattles from familiar kin, unfamiliar kin, and non-kin. Initial analyses revealed that red squirrels did not discriminate between familiar and unfamiliar kin, but also did not discriminate between kin and non-kin, despite previous evidence indicating this capability. Post hoc analyses showed that a squirrel’s propensity to rattle in response to playback depended on an interaction between relatedness and how the playback stimuli had been recorded. Red squirrels discriminated between rattles from close kin (r = 0.5) and rattles from non-kin (r < 0.125) when the rattles were recorded from provoked squirrels. Squirrels did not exhibit kin discrimination in response to unsolicited rattles. Once we accounted for how the stimuli had been recorded, we found no difference in the responses to familiar and unfamiliar kin. Our study suggests that kin discrimination by red squirrels may be context dependent

    Seasonal, spatial, and maternal effects on gut microbiome in wild red squirrels

    Full text link
    Abstract Background Our understanding of gut microbiota has been limited primarily to findings from human and laboratory animals, but what shapes the gut microbiota in nature remains largely unknown. To fill this gap, we conducted a comprehensive study of gut microbiota of a well-studied North American red squirrel (Tamiasciurus hudsonicus) population. Red squirrels are territorial, solitary, and live in a highly seasonal environment and therefore represent a very attractive system to study factors that drive the temporal and spatial dynamics of gut microbiota. Result For the first time, this study revealed significant spatial patterns of gut microbiota within a host population, suggesting limited dispersal could play a role in shaping and maintaining the structure of gut microbial communities. We also found a remarkable seasonal rhythm in red squirrel’s gut microbial composition manifested by a tradeoff between relative abundance of two genera Oscillospira and Corpococcus and clearly associated with seasonal variation in diet availability. Our results show that in nature, environmental factors exert a much stronger influence on gut microbiota than host-associated factors including age and sex. Despite strong environmental effects, we found clear evidence of individuality and maternal effects, but host genetics did not seem to be a significant driver of the gut microbial communities in red squirrels. Conclusion Taken together, the results of this study emphasize the importance of external ecological factors rather than host attributes in driving temporal and spatial patterns of gut microbiota in natural environment.https://deepblue.lib.umich.edu/bitstream/2027.42/140397/1/40168_2017_Article_382.pd

    Red squirrels use territorial vocalizations for kin discrimination

    Get PDF
    The ability to discriminate among individuals, or among classes of individuals, can provide animals with important fitness benefits. Although several mechanisms for discrimination are possible, most require animals to show stable phenotypic variation that reflects their identity or their membership in a particular class (e.g. sex, mate, kin). For territorial animals that rarely interact physically, vocalizations could serve as long-distance signals that facilitate discrimination. In this study, we tested whether the territorial rattle vocalizations of North American red squirrels, Tamiasciurus hudsonicus, are repeatable, and whether they could hence provide the basis for multiple types of discrimination. We measured four structural features from two rattles from each of 76 marked squirrels. All four features were repeatable, which is consistent with territorial rattles being individually distinctive. We then conducted a playback experiment to determine whether squirrels use rattles for discrimination. Specifically, we tested whether squirrels discriminate between the rattles of neighbours and non-neighbours, and kin (coefficient of relatedness, r ≄ 0.25) and non-kin (r < 0.125). Following a 2 × 2 factorial design, we broadcast a rattle from a non-neighbouring nonkin individual to 15 subjects, from a neighbouring nonkin individual to 14 subjects, from a non-neighbouring kin individual to 11 subjects, and from a neighbouring kin individual to 13 subjects. Subjects did not discriminate between the rattles of neighbours and non-neighbours, but did respond differently to the rattles of kin and nonkin. Specifically, squirrels were significantly more likely to produce a rattle of their own in response to the broadcasted rattles of nonkin versus the broadcasted rattles of kin. This result demonstrates that red squirrels can use territorial vocalizations for kin discrimination. It also suggests that they are more tolerant of territorial intrusions by kin

    Sexually selected infanticide by male red squirrels in advance of a mast year

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143645/1/ecy2158-sup-0002-AppendixS2.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143645/2/ecy2158-sup-0001-AppendixS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143645/3/ecy2158.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143645/4/ecy2158_am.pd
    • 

    corecore